I’m trying to get my network to evaluate an INDArray. This is my network:
public class DQN {
private final int inputSize;
private final int outputSize;
private final MultiLayerNetwork network;
public DQN(int inputSize, int outputSize){
this.inputSize = inputSize;
this.outputSize = outputSize;
MultiLayerConfiguration config = setConfig();
this.network = new MultiLayerNetwork(config);
this.network.init();
}
private MultiLayerConfiguration setConfig(){
return new NeuralNetConfiguration.Builder()
.seed(12345)
.weightInit(WeightInit.XAVIER)
.updater(new AdaGrad(0.5))
.activation(Activation.RELU)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.l2(0.0001)
.list()
.layer(0, new DenseLayer.Builder().nIn(this.inputSize).nOut(250).weightInit(WeightInit.XAVIER).activation(Activation.RELU) //First hidden layer
.build())
.layer(1, new OutputLayer.Builder().nIn(250).nOut(this.outputSize).weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX) //Output layer
.lossFunction(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.build())
.build();
}
public INDArray evaluate(INDArray vec){
return this.network.output(vec);
}
}
Unfortunately, whenever I try to call evaluate with my INDArray, I get:
Exception in thread "Thread-2" org.deeplearning4j.exception.DL4JInvalidInputException: Input that is not a matrix; expected matrix (rank 2), got rank 1 array with shape [23]. Missing preprocessor or wrong input type? (layer name: layer0, layer index: 0, layer type: DenseLayer)
My inputs are rank-1 vectors with 23 elements, but the net seems to be wanting a matrix. Does anyone know why? Thanks