Ok,this time when I input the ‘ulimit -c unlimited’ in the cmd line before run the java code.And the log seems to be detailed.Here is the log file.
This time ,in the log file you can see this:
Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j org.nd4j.nativeblas.Nd4jCpu.execCustomOp2(Lorg/bytedeco/javacpp/PointerPointer;JLorg/bytedeco/javacpp/Pointer;)I+0
j org.nd4j.linalg.cpu.nativecpu.ops.NativeOpExecutioner.exec(Lorg/nd4j/linalg/api/ops/CustomOp;Lorg/nd4j/linalg/api/ops/OpContext;)[Lorg/nd4j/linalg/api/ndarray/INDArray;+98
j org.nd4j.linalg.factory.Nd4j.exec(Lorg/nd4j/linalg/api/ops/CustomOp;Lorg/nd4j/linalg/api/ops/OpContext;)[Lorg/nd4j/linalg/api/ndarray/INDArray;+5
j org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper.preOutput(Lorg/nd4j/linalg/api/ndarray/INDArray;Lorg/nd4j/linalg/api/ndarray/INDArray;Lorg/nd4j/linalg/api/ndarray/INDArray;[I[I[ILorg/deeplearning4j/nn/conf/layers/ConvolutionLayer$AlgoMode;Lorg/deeplearning4j/nn/conf/layers/ConvolutionLayer$FwdAlgo;Lorg/deeplearning4j/nn/conf/ConvolutionMode;[ILorg/deeplearning4j/nn/conf/CNN2DFormat;Lorg/deeplearning4j/nn/workspace/LayerWorkspaceMgr;)Lorg/nd4j/linalg/api/ndarray/INDArray;+498
j org.deeplearning4j.nn.layers.convolution.ConvolutionLayer.preOutput(ZZLorg/deeplearning4j/nn/workspace/LayerWorkspaceMgr;)Lorg/nd4j/common/primitives/Pair;+609
j org.deeplearning4j.nn.layers.convolution.ConvolutionLayer.activate(ZLorg/deeplearning4j/nn/workspace/LayerWorkspaceMgr;)Lorg/nd4j/linalg/api/ndarray/INDArray;+61
j org.deeplearning4j.nn.graph.vertex.impl.LayerVertex.doForward(ZLorg/deeplearning4j/nn/workspace/LayerWorkspaceMgr;)Lorg/nd4j/linalg/api/ndarray/INDArray;+23
j org.deeplearning4j.nn.graph.ComputationGraph.outputOfLayersDetached(ZLorg/deeplearning4j/nn/api/FwdPassType;[I[Lorg/nd4j/linalg/api/ndarray/INDArray;[Lorg/nd4j/linalg/api/ndarray/INDArray;[Lorg/nd4j/linalg/api/ndarray/INDArray;ZZLorg/nd4j/linalg/api/memory/MemoryWorkspace;)[Lorg/nd4j/linalg/api/ndarray/INDArray;+1172
j org.deeplearning4j.nn.graph.ComputationGraph.output(ZZ[Lorg/nd4j/linalg/api/ndarray/INDArray;)[Lorg/nd4j/linalg/api/ndarray/INDArray;+27
j org.deeplearning4j.nn.graph.ComputationGraph.outputSingle(ZZ[Lorg/nd4j/linalg/api/ndarray/INDArray;)Lorg/nd4j/linalg/api/ndarray/INDArray;+43
j org.deeplearning4j.nn.graph.ComputationGraph.outputSingle(Z[Lorg/nd4j/linalg/api/ndarray/INDArray;)Lorg/nd4j/linalg/api/ndarray/INDArray;+4
j org.deeplearning4j.nn.graph.ComputationGraph.outputSingle([Lorg/nd4j/linalg/api/ndarray/INDArray;)Lorg/nd4j/linalg/api/ndarray/INDArray;+3
j Separator.separate([[F)[Lorg/nd4j/linalg/api/ndarray/INDArray;+111
j Separator.main([Ljava/lang/String;)V+9
v ~StubRoutines::call_stub
My code is simple ,just load the model and give it an input of the right shape.see below:
ComputationGraph computationGraph1 = KerasModelImport.importKerasModelAndWeights(“kerasModels/model1.h5”);
INDArray outputTensor1 = computationGraph1.outputSingle(inputTensor);
Because the model requires the input shape of (?,512,1024,2),so I new an INDArray of shape (1,512,1024,2)
The .h5 model file is here.
What’s more interesting,with the same code running on windows,I didn’t get the log,for there is no output log in the terminal,it is just stuck,telling me the code is running ,however I got nothing after a long time of wating,and it will not fall into the JVM error. But on the linux ,I will get the error log.
Emmmm,the code is not running in a concurrent env.But it reported this err log.
Thanks,hope you can get what I mean.My English not so pretty.