Bidirectional bidirectional = new Bidirectional.Builder().mode(Bidirectional.Mode.ADD).rnnLayer(new LSTM.Builder().nOut(250).l2(0.003495283883324279).dropOut(0.6816483486423628).activation(Activation.TANH)
.updater(new Adam(new StepSchedule(ScheduleType.EPOCH, learningRate, decayRate, step))).build()).build();
Can Bidirectional be used like this way? RuntimeException thrown when trainning:
[main] WARN org.deeplearning4j.nn.layers.recurrent.LSTMHelpers - MKL/CuDNN execution failed - falling back on built-in implementation
java.lang.RuntimeException: cuDNN status = 8: CUDNN_STATUS_EXECUTION_FAILED
at org.deeplearning4j.cuda.BaseCudnnHelper.checkCudnn(BaseCudnnHelper.java:48)
at org.deeplearning4j.cuda.recurrent.CudnnLSTMHelper.activate(CudnnLSTMHelper.java:469)
at org.deeplearning4j.nn.layers.recurrent.LSTMHelpers.activateHelper(LSTMHelpers.java:205)
at org.deeplearning4j.nn.layers.recurrent.LSTM.activateHelper(LSTM.java:177)
at org.deeplearning4j.nn.layers.recurrent.LSTM.activate(LSTM.java:147)
at org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer.activate(BidirectionalLayer.java:201)
at org.deeplearning4j.nn.graph.vertex.impl.LayerVertex.doForward(LayerVertex.java:111)
at org.deeplearning4j.nn.graph.ComputationGraph.ffToLayerActivationsInWS(ComputationGraph.java:2136)
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:1373)
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:1342)
at org.deeplearning4j.optimize.solvers.BaseOptimizer.gradientAndScore(BaseOptimizer.java:170)
at org.deeplearning4j.optimize.solvers.StochasticGradientDescent.optimize(StochasticGradientDescent.java:63)
at org.deeplearning4j.optimize.Solver.optimize(Solver.java:52)
at org.deeplearning4j.nn.graph.ComputationGraph.fitHelper(ComputationGraph.java:1166)
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:1116)
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:1083)