Hi, I have a question regarding using external error to calculate gradient as this example: MultiLayerNetworkExternalErrors.java
If my nn is like this:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.weightInit(WeightInit.XAVIER)
.activation(Activation.RELU)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(new Nesterovs(0.001,0.9))
.list()
.layer(0, new DenseLayer.Builder().nOut(20).build())
.layer(1, new DenseLayer.Builder().activation(Activation.SOFTMAX).nOut(4).build())
.setInputType(InputType.feedForward(1))
.build();
To calculate the gradient, should I use the vanila error or the error after softmax activation in the net.backpropGradient(error,null) function?