@agibsonccc I don’t quite understand your comment. A large part of it is all crossed out.
In any event, as evidenced by the dub output (see below) the dataset I pass to fit is NOT null. The information below comes straight from the deugger. I did not touch it.
What am I missing?
My code
normalizer.fit(trainData.next()); //Apply normalization to the training data
ABSTRACTDATASETNORMALIZER
public void fit(DataSet dataSet) {
this.featureStats = this.newBuilder().addFeatures(dataSet).build();
if (this.isFitLabel()) {
this.labelStats = this.newBuilder().addLabels(dataSet).build();
}
dataSet = {DataSet@2680} "===========INPUT===================\n[[[ 45.7535, 45.7535, 0, … 0, 0, 0], \n[ 8.3126, 8.3126, 0, … 0, 0, 0], \n[ 1.6862e12, 1.6862e12, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 1.0000, 1.0000, 0, … 0, 0, 0]], \n\n[[ 45.7534, 45.7534, 0, … 0, 0, 0], \n[ 8.3122, 8.3122, 0, … 0, 0, 0], \n[ 1.6862e12, 1.6862e12, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 1.0000, 1.0000, 0, … 0, 0, 0]], \n\n[[ 45.7535, 0, 0, … 0, "
columnNames = {ArrayList@2683} size = 0
labelNames = {ArrayList@2684} size = 0
features = {NDArray@2685} "[[[ 45.7535, 45.7535, 0, … 0, 0, 0], \n[ 8.3126, 8.3126, 0, … 0, 0, 0], \n[ 1.6862e12, 1.6862e12, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 1.0000, 1.0000, 0, … 0, 0, 0]], \n\n[[ 45.7534, 45.7534, 0, … 0, 0, 0], \n[ 8.3122, 8.3122, 0, … 0, 0, 0], \n[ 1.6862e12, 1.6862e12, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 1.0000, 1.0000, 0, … 0, 0, 0]], \n\n[[ 45.7535, 0, 0, … 0, 0, 0], \n[ 8.3126, "
labels = {NDArray@2686} “[[[ 0, 45.7535, 0, … 0, 0, 0], \n[ 0, 8.3127, 0, … 0, 0, 0]], \n\n[[ 0, 45.7533, 0, … 0, 0, 0], \n[ 0, 8.3124, 0, … 0, 0, 0]], \n\n[[ 45.7535, 0, 0, … 0, 0, 0], \n[ 8.3126, 0, 0, … 0, 0, 0]], \n\n …, \n\n[[ 0, 45.7535, 0, … 0, 0, 0], \n[ 0, 8.3120, 0, … 0, 0, 0]], \n\n[[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0]], \n\n[[ 45.7534, 0, 0, … 0, 0, 0], \n[ 8.3122, 0, 0, … 0, 0, 0]]]”
featuresMask = {NDArray@2687} “[[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n …, \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0]]”
labelsMask = {NDArray@2688} “[[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n …, \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0], \n[ 0, 0, 0, … 0, 0, 0]]”
exampleMetaData = null
preProcessed = false
DISTRIBUTIONSTATS
public DistributionStats build() {
if (this.runningMean == null) {
throw new RuntimeException("No data was added, statistics cannot be determined");
} else {
return new DistributionStats(this.runningMean.dup(), Transforms.sqrt(this.runningVariance, true));
}
}
}
}
EXCEPTION “No data was added, statistics cannot be determined” THROWN