Error -1073740791 (0xC0000409) when using Convolution1D with CUDA

I am creating a network where the cnn-1d layer is at the input, the network performs several iterations of training and then the process shuts down with an error “Process finished with exit code -1073740791 (0xC0000409)”. The error is only when using CUDA, when using the CPU everything is fine. Also, everything works when this layer is not the first, but, for example, the second or third. I tried to select hyperparameters, activation functions, etc., but nothing helps. When the batch size is smaller, the network can perform a little more iterations.
You can repeat this :

public static void main(String[] args) {
        CudaEnvironment.getInstance().getConfiguration().setMaximumDeviceCacheableLength(1024 * 1024 * 2048L).setMaximumDeviceCache((long) (0.5 * 6096 * 1024 * 1024 * 2048L)).setMaximumHostCacheableLength(1024 * 1024 * 2048L).setMaximumHostCache((long) (0.5 * 6096 * 1024 * 1024 * 2048L));
        Nd4j.getMemoryManager().setAutoGcWindow(100000);
        Nd4j.getMemoryManager().togglePeriodicGc(false);
        Nd4j.getEnvironment().allowHelpers(false);


        int batchSize = 64;
        int nEpochs = 10;
        int numSamples = 100;
        int inputSize = 10;
        int sequenceLength = 60;
        int outputSize = 3;

        // Generate random data
        Random rng = new Random();
        ArrayList<DataSet> sets = new ArrayList<>();
        for (int i = 0; i < numSamples; i++) {
            double[][][] input = new double[1][inputSize][sequenceLength];
            for (int j = 0; j < inputSize; j++) {
                for (int k = 0; k < 10; k++) {
                    input[0][j][k] = rng.nextDouble();
                }
            }
            double[][][] output = new double[1][outputSize][sequenceLength];
            for (int j = 0; j < outputSize; j++) {
                for (int k = 0; k < 10; k++) {
                    output[0][j][k] = rng.nextDouble();
                }
            }
             INDArray in = Nd4j.createFromArray(input);
             INDArray out = Nd4j.createFromArray(output);
             sets.add(new DataSet(in, out));
        }
        DataSetIterator iterator = new ListDataSetIterator<>(sets, batchSize);

        MultiLayerConfiguration config = new NeuralNetConfiguration.Builder()
                .seed(123)
                .trainingWorkspaceMode(WorkspaceMode.ENABLED)
                .inferenceWorkspaceMode(WorkspaceMode.ENABLED)
                .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                .gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
                .weightInit(WeightInit.LECUN_NORMAL)
                .activation(Activation.TANH)
                .convolutionMode(ConvolutionMode.Causal)
                .cudnnAlgoMode(ConvolutionLayer.AlgoMode.NO_WORKSPACE)
                .updater(new Adam())
                .list()
                .setInputType(InputType.recurrent(inputSize, sequenceLength, RNNFormat.NCW))
                .layer(new Convolution1DLayer.Builder(3,1)
                                .nOut(100)
                                .activation(Activation.TANH)
                                .build())
                .layer(new RnnOutputLayer.Builder(LossFunctions.LossFunction.MSE)
                        .activation(Activation.IDENTITY)
                        .nOut(outputSize)
                        .build())
                .backpropType(BackpropType.Standard)
                .build();

        MultiLayerNetwork model = new MultiLayerNetwork(config);
        
        
        System.out.println(model.summary());
        model.setListeners(new ScoreIterationListener(1));

        for (int i = 0; i < nEpochs; i++) {
            model.fit(iterator);
        }
    }

Here is pom.xml:

    <dependencies>
        <!-- DL4j and Nd4j dependencies start -->
        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-native</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-native-platform</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-native-api</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-backend-impls</artifactId>
            <version>${dl4j-master.version}</version>
            <type>pom</type>
        </dependency>

        <dependency>
            <groupId>org.deeplearning4j</groupId>
            <artifactId>deeplearning4j-core</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-api</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.deeplearning4j</groupId>
            <artifactId>deeplearning4j-ui</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.webjars</groupId>
            <artifactId>jquery-ui</artifactId>
            <version>1.13.2</version>
        </dependency>

        <dependency>
            <groupId>org.webjars</groupId>
            <artifactId>jquery</artifactId>
            <version>3.7.1</version>
        </dependency>

        <dependency>
            <groupId>org.webjars</groupId>
            <artifactId>bootstrap</artifactId>
            <version>5.3.3</version>
        </dependency>

        <dependency>
            <groupId>org.webjars.bower</groupId>
            <artifactId>lodash</artifactId>
            <version>4.17.21</version>
        </dependency>

        <dependency>
            <groupId>com.beust</groupId>
            <artifactId>jcommander</artifactId>
            <version>1.82</version>
        </dependency>

        <dependency>
            <groupId>io.vertx</groupId>
            <artifactId>vertx-core</artifactId>
            <version>3.9.13</version>
        </dependency>

        <dependency>
            <groupId>io.vertx</groupId>
            <artifactId>vertx-web</artifactId>
            <version>3.9.13</version>
        </dependency>
        <!-- DL4j and Nd4j dependencies end -->


        <!-- CUDA dependencies start -->
        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-cuda-11.6</artifactId>
            <version>${dl4j-master.version}</version>
        </dependency>

        <dependency>
            <groupId>org.nd4j</groupId>
            <artifactId>nd4j-cuda-11.6</artifactId>
            <version>${dl4j-master.version}</version>
            <classifier>windows-x86_64-cudnn</classifier>
        </dependency>
        <!-- CUDA dependencies end -->

And here is console output:

2024-05-17 12:18:41.504[1715937521504] | INFO  | main       | org.nd4j.linalg.factory.Nd4jBackend  - Loaded [JCublasBackend] backend
2024-05-17 12:18:44.766[1715937524766] | INFO  | main       | org.nd4j.nativeblas.NativeOpsHolder  - Number of threads used for linear algebra: 32
2024-05-17 12:18:44.821[1715937524821] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Backend used: [CUDA]; OS: [Windows 11]
2024-05-17 12:18:44.821[1715937524821] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Cores: [6]; Memory: [4,0GB];
2024-05-17 12:18:44.821[1715937524821] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Blas vendor: [CUBLAS]
2024-05-17 12:18:44.831[1715937524831] | INFO  | main       | o.nd4j.linalg.jcublas.JCublasBackend - ND4J CUDA build version: 11.6.55
2024-05-17 12:18:44.833[1715937524833] | INFO  | main       | o.nd4j.linalg.jcublas.JCublasBackend - CUDA device 0: [NVIDIA GeForce GTX 1060 6GB]; cc: [6.1]; Total memory: [6442319872]
2024-05-17 12:18:44.833[1715937524833] | INFO  | main       | o.nd4j.linalg.jcublas.JCublasBackend - Backend build information:
 MSVC: 192930146
STD version: 201402L
DEFAULT_ENGINE: samediff::ENGINE_CUDA
HAVE_FLATBUFFERS
HAVE_CUDNN
2024-05-17 12:18:46.527[1715937526527] | INFO  | main       | o.d.nn.multilayer.MultiLayerNetwork  - Starting MultiLayerNetwork with WorkspaceModes set to [training: ENABLED; inference: ENABLED], cacheMode set to [NONE]

==============================================================================
LayerName (LayerType)         nIn,nOut   TotalParams   ParamsShape            
==============================================================================
layer0 (Convolution1DLayer)   10,100     3 100         b:{100}, W:{100,10,3,1}
layer1 (RnnOutputLayer)       100,3      303           W:{100,3}, b:{3}       
------------------------------------------------------------------------------
            Total Parameters:  3 403
        Trainable Parameters:  3 403
           Frozen Parameters:  0
==============================================================================

2024-05-17 12:18:46.840[1715937526840] | INFO  | main       | o.d.o.l.ScoreIterationListener       - Score at iteration 0 is 6.761971791585286
2024-05-17 12:18:46.884[1715937526884] | INFO  | main       | o.d.o.l.ScoreIterationListener       - Score at iteration 1 is 5.826276425962095
2024-05-17 12:18:46.927[1715937526927] | INFO  | main       | o.d.o.l.ScoreIterationListener       - Score at iteration 2 is 4.543416659037272
2024-05-17 12:18:46.957[1715937526957] | INFO  | main       | o.d.o.l.ScoreIterationListener       - Score at iteration 3 is 3.873487967031973

Process finished with exit code -1073740791 (0xC0000409)

@lolk5744 could you enable verbose and debug mode with:
Nd4j.getExecutioner().enableDebugMode(true);
Nd4j.getExecutioner().enableVerboseMode(true);
I’m wondering if it has anything to do with cudnn
or your cuda versions.

You could also try 11.8 and see what that does.

here is last part of console log
i also tried different versions of cuda and dl4j, but nothing helps

2024-05-18 08:52:18.296[1716011538296] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.7236274226320037, 0.9848995392007809, 0.9905395227928847, 0.36156385387810064, 0.3145735222094428, 0.7788954893831537, 0.9821945547404779, 0.09323804750605547, 0.19438085291388096, 0.5026413267655572]
2024-05-18 08:52:18.296[1716011538296] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.5927092844084458, 0.8726845160914304, 0.48914550393495293, 0.364867382739931, 0.6485759448980178, 0.7295068984154267, 0.9793942794974538, 0.13788472044793965, 0.8433853016570119, 0.12491432444192574]
2024-05-18 08:52:18.297[1716011538297] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.5638371122447321, 0.5567319778408911, 0.6655173462439297, 0.4891422785663616, 0.026479426514502302, 0.6688572411713299, 0.63734992857589, 0.5802605289391294, 0.2742421214220353, 0.11214426362817864]
2024-05-18 08:52:18.297[1716011538297] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.7113111007999622, 0.021055684792806506, 0.6847201774323988, 0.4041536290132093, 0.788363180898954, 0.13856942465852595, 0.9666110935082128, 0.980928087586389, 0.50636358006302, 0.2086134994647696]
2024-05-18 08:52:18.298[1716011538298] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.6791770300960935, 0.6299076277176658, 0.8429119200796064, 0.18730842668755798, 0.3329182197798428, 0.057047023451028966, 0.5311832163162192, 0.7609556971840756, 0.3238193714468752, 0.689916578977218]
2024-05-18 08:52:18.298[1716011538298] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.4890845541951102, 0.48210897729616997, 0.13096935368973361, 0.893022753795853, 0.5958954396208004, 0.88289635105584, 0.42749100340724366, 0.3328326898468733, 0.46740515123815474, 0.012392485197075809]
2024-05-18 08:52:18.299[1716011538299] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.27579686108844936, 0.05016607522294736, 0.5936973327250364, 0.9445993689258556, 0.8630924807773847, 0.41840451665950174, 0.8557736008295244, 0.6558779296457502, 0.44486157994982234, 0.927991607251029]
2024-05-18 08:52:18.299[1716011538299] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 1, 3, 60, 180, 60, 1, 16384, 1, 99]; Z values: [0.8406374900764643, 0.21564271422775594, 0.05594062553987489, 0.41593231911897477, 0.8158022809321505, 0.7172131873426367, 0.7174828339732259, 0.18312372158551804, 0.46661066053238676, 0.6960834638037793]
2024-05-18 08:52:18.299[1716011538299] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 64, 10, 60, 600, 60, 1, 8192, 1, 99]; Z values: [0.4927096962928772, 0.21627919375896454, 0.26857131719589233, 0.34610918164253235, 0.942725658416748, 0.8027226328849792, 0.3467838168144226, 0.8365378975868225, 0.4496080279350281, 0.35975003242492676]
Removing variable <1:0>
Removing variable <1:1>
Removing variable <1:2>
Executing op: [conv1d]
Executing op: [conv2d]
About to get variable in  execute output
node_1:0 result shape: [64, 100, 1, 60]; dtype: FLOAT; first values [-0.216508, -0.129553, 0.280675, 0.404109, 0.72004, 0.180419, 0.470989, 0.61148, 0.311943, 0.709528, 0.632694, 0.489791, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787]
About to get variable in  execute output
node_1:0 result shape: [64, 100, 60]; dtype: FLOAT; first values [-0.216508, -0.129553, 0.280675, 0.404109, 0.72004, 0.180419, 0.470989, 0.61148, 0.311943, 0.709528, 0.632694, 0.489791, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787]
2024-05-18 08:52:18.308[1716011538308] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: tanh; Z shapeInfo: [3, 64, 100, 60, 6000, 60, 1, 8192, 1, 99]; Z values: [-0.2131873518228531, -0.12883307039737701, 0.2735293507575989, 0.3834589123725891, 0.616934061050415, 0.17848637700080872, 0.43899834156036377, 0.5451676845550537, 0.30220380425453186, 0.6103807687759399]
2024-05-18 08:52:18.309[1716011538309] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 64, 60, 100, 1, 64, 3840, 8192, 1, 102]; Z values: [-0.2131873518228531, -0.13880465924739838, -0.1563597470521927, -0.27252882719039917, -0.2892412543296814, -0.21620847284793854, -0.37752094864845276, -0.14584416151046753, -0.24746383726596832, -0.12876714766025543]
Executing op: [matmul]
About to get variable in  execute output
node_1:0 result shape: [3840, 3]; dtype: FLOAT; first values [0.194838, 0.148324, 0.291508, 0.0149222, 0.190302, 0.50723, 0.046599, 0.0744076, 0.262094, 0.0274581, 0.112743, 0.194559, -0.0160915, 0.24002, 0.365286, 0.269111, 0.0186101, 0.473772, 0.0707898, 0.147176, 0.381926, 0.2534, 0.0794971, 0.39419, 0.228017, 0.107316, 0.52764, 0.0493652, 0.215254, 0.413892, 0.141709, 0.195093]
2024-05-18 08:52:18.310[1716011538310] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [2, 3840, 3, 3, 1, 8192, 1, 99]; Z values: [0.19483761489391327, 0.14832396805286407, 0.29150834679603577, 0.014922156929969788, 0.19030186533927917, 0.5072302222251892, 0.04659903049468994, 0.07440761476755142, 0.26209431886672974, 0.027458082884550095]
2024-05-18 08:52:18.311[1716011538311] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: broadcastadd; Z shapeInfo: [2, 3840, 3, 3, 1, 8192, 1, 99]; Z values: [0.2032960206270218, 0.15766027569770813, 0.29938197135925293, 0.02338055707514286, 0.19963817298412323, 0.5151038765907288, 0.055057428777217865, 0.08374392986297607, 0.2699679434299469, 0.03591648489236832]
2024-05-18 08:52:18.311[1716011538311] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 64, 60, 3, 1, 64, 3840, 16384, 1, 102]; Z values: [0.40770247248370317, 0.6815587422394314, 0.9145880537905078, 0.11076533815936151, 0.1479493053533012, 0.4530561060535546, 0.1914952641457317, 0.0452659710442147, 0.9550193732480476, 0.9759931980777016]
2024-05-18 08:52:18.311[1716011538311] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [2, 3840, 3, 1, 3840, 8192, 1, 102]; Z values: [0.4077024757862091, 0.6815587282180786, 0.9145880341529846, 0.11076533794403076, 0.14794930815696716, 0.45305609703063965, 0.19149526953697205, 0.04526597261428833, 0.9550193548202515, 0.9759932160377502]
2024-05-18 08:52:18.311[1716011538311] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [2, 3840, 3, 3, 1, 8192, 1, 99]; Z values: [0.2032960206270218, 0.15766027569770813, 0.29938197135925293, 0.02338055707514286, 0.19963817298412323, 0.5151038765907288, 0.055057428777217865, 0.08374392986297607, 0.2699679434299469, 0.03591648489236832]
Executing op: [subtract]
About to get variable in  execute output
node_1:0 result shape: [3840, 3]; dtype: FLOAT; first values [-0.204406, -0.836917, 0.138788, -0.658178, -0.267163, 0.358291, -0.859531, -0.230039, -0.080614, -0.0748489, -0.825176, -0.756881, -0.155582, -0.692394, 0.0964312, -0.175487, -0.573893, -0.140229, -0.112247, -0.758598, -0.148674, 0.216592, -0.343243, -0.532758, -0.718544, -0.594706, -0.0491676, -0.91817, -0.538306, 0.220323, 0.128171, 0.0866219]
2024-05-18 08:52:18.313[1716011538313] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: mul_scalar; Z shapeInfo: [2, 3840, 3, 3, 1, 8192, 1, 99]; Z values: [-0.40881291031837463, -1.6738345623016357, 0.2775754928588867, -1.3163563013076782, -0.5343260765075684, 0.7165811061859131, -1.719061255455017, -0.4600772261619568, -0.16122806072235107, -0.1496977061033249]
2024-05-18 08:52:18.313[1716011538313] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: div_scalar; Z shapeInfo: [2, 3840, 3, 3, 1, 8192, 1, 99]; Z values: [-0.13627097010612488, -0.5579448342323303, 0.09252516180276871, -0.4387854337692261, -0.17810869216918945, 0.2388603687286377, -0.5730203986167908, -0.1533590704202652, -0.05374268814921379, -0.04989923536777496]
H14 opNum:[2]
H14 opNum:[3]
Executing op: [matmul]
About to get variable in  execute output
node_1:0 result shape: [100, 3]; dtype: FLOAT; first values [43.4431, 46.24, 38.0488, 7.38418, 3.75716, 18.0126, 7.64636, 8.08442, 9.03976, 5.6303, 10.5544, -1.05823, 16.5306, 17.3213, 25.3982, -10.3632, -16.7384, -36.8826, -22.9576, -29.1347, -28.8533, 32.7411, 37.8916, 42.662, 9.57405, 16.3081, 4.59026, -17.2861, -13.4738, -20.2293, -26.5886, -24.5848]
2024-05-18 08:52:18.314[1716011538314] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: reduce_sum; Z shapeInfo: [1, 3, 1, 8192, 1, 102]; Z values: [126.40974426269531, 149.94094848632812, 173.5321044921875]
2024-05-18 08:52:18.314[1716011538314] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: reduce_sum; Z shapeInfo: [1, 3, 1, 8192, 1, 102]; Z values: [126.40974426269531, 149.94094848632812, 173.5321044921875]
SF7 opNum:[0]
Executing op: [matmul]
About to get variable in  execute output
node_1:0 result shape: [100, 3840]; dtype: FLOAT; first values [0.0161559, 0.0360472, 0.0157436, -0.0370767, 0.0120311, -0.00134632, -0.0023981, -0.0331978, 0.0160076, 0.0353462, -0.00078982, 0.0333098, 0.00994238, 0.0114942, 0.0210549, 0.00122182, 0.0138238, 0.00186414, 0.00445631, 0.0072605, -0.0195822, -0.0159782, -0.0211374, 0.0237615, -0.00470583, 0.0207794, 0.0323505, 0.0290704, 0.00513574, -0.0102213, -0.0205574, 0.0243507]
2024-05-18 08:52:18.317[1716011538317] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [2, 3840, 100, 1, 3840, 8192, 1, 102]; Z values: [0.01615591160953045, 0.036047156900167465, 0.015743589028716087, -0.03707671910524368, 0.012031077407300472, -0.0013463234063237906, -0.0023980981204658747, -0.0331977903842926, 0.016007615253329277, 0.03534621000289917]
2024-05-18 08:52:18.317[1716011538317] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 64, 10, 60, 600, 60, 1, 8192, 1, 99]; Z values: [0.4927096962928772, 0.21627919375896454, 0.26857131719589233, 0.34610918164253235, 0.942725658416748, 0.8027226328849792, 0.3467838168144226, 0.8365378975868225, 0.4496080279350281, 0.35975003242492676]
Removing variable <1:0>
Removing variable <1:1>
Removing variable <1:2>
Executing op: [conv1d]
Executing op: [conv2d]
About to get variable in  execute output
node_1:0 result shape: [64, 100, 1, 60]; dtype: FLOAT; first values [-0.216508, -0.129553, 0.280675, 0.404109, 0.72004, 0.180419, 0.470989, 0.61148, 0.311943, 0.709528, 0.632694, 0.489791, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787]
About to get variable in  execute output
node_1:0 result shape: [64, 100, 60]; dtype: FLOAT; first values [-0.216508, -0.129553, 0.280675, 0.404109, 0.72004, 0.180419, 0.470989, 0.61148, 0.311943, 0.709528, 0.632694, 0.489791, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787, 0.00576787]
Executing op: [tanh_bp]
About to get variable in  execute output
node_1:0 result shape: [64, 100, 60]; dtype: FLOAT; first values [0.0154216, -0.00458896, -0.026168, -0.0064919, 0.0102884, 0.0148072, 0.0227946, 0.0239741, 0.0260833, -0.00815221, 0.00705692, -0.00127967, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141, 0.00151141]
2024-05-18 08:52:18.322[1716011538322] | INFO  | main       | o.n.l.a.o.e.DefaultOpExecutioner     - Op name: old_assign; Z shapeInfo: [3, 64, 10, 60, 600, 60, 1, 8192, 1, 99]; Z values: [0.4927096962928772, 0.21627919375896454, 0.26857131719589233, 0.34610918164253235, 0.942725658416748, 0.8027226328849792, 0.3467838168144226, 0.8365378975868225, 0.4496080279350281, 0.35975003242492676]
Executing op: [conv1d_bp]
H14 opNum:[14]
H14 opNum:[14]
Executing op: [conv2d_bp]

Process finished with exit code -1073740791 (0xC0000409)

@lolk5744 can you run this with cuda-memcheck?
I’d be curious to see where the crash is coming from.
An issue like this can come from a lot of sources.Conflicting cuda versions is a big one.